超大口径平面反射镜的光学检测(特邀)

王孝坤, 戚二辉*, 胡海翔, 苏 航, 李凌众, 王 晶, 罗 霄, 张学军

(中国科学院长春光学精密机械与物理研究所中国科学院光学系统先进制造技术 重点实验室,吉林长春130033)

摘 要: 在简要总结了各种检测大口径反射镜难点的基础上,为了实现 30 m 望远镜 (TMT) 超大口径 第三反射镜的高精度检测,提出了一种融合五棱镜扫描技术和子孔径拼接测试技术的新方法。大口径 反射镜分阶段依次进行了五棱镜扫描测试和子孔径拼接检测,对该技术的基本原理和基础理论进行了 分析和研究,制定了检测 30 m 望远镜第三反射镜 (口径为 3.5 m×2.5 m)的方案,对其测试流程、五棱镜 设计、五棱镜扫描像差拟合、拼接最优化算法等进行了详细分析,并对 30 m 望远镜第三反射镜的原理 镜进行了实验验证,其最终拼接检测面形的均方根值 (RMS) 和斜率均方根值 (slopeRMS) 分别为 28.676 nm 和 0.97 µrad。

关键词:光学检测;超大口径平面反射镜;30m望远镜;子孔径拼接干涉检测;五棱镜扫描 中图分类号:TQ171.65;O436.1 文献标志码:A DOI: 10.3788/IRLA20210953

Optical testing of the super-large plane mirror (*Invited*)

Wang Xiaokun, Qi Erhui*, Hu Haixiang, Su Hang, Li Lingzhong, Wang Jing, Luo Xiao, Zhang Xuejun

(Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

Abstract: On the basis of summing up the difficulties of testing large flat mirror, for the sake of testing superlarge surface especially for the tertiary mirror of Thirty Meter Telescope (TMT-M3) with precise method, a new technology syncretized pentaprism scanning method and Subaperture Stitching Interferometry (SSI) was proposed. The large mirror was tested by pentaprism scanning and SSI successively, the basic principle of the metrology was introduced and researched, and a reasonable optical testing project of TMT-M3 with the aperture of $3.5 \text{ m} \times 2.5 \text{ m}$ was made, the flow chart, pentaprism design, aberration fitting of pentaprism scanning, and the optimum stitching algorithm were analyzed particularly. And a prototype of TMT-M3 was developed for experimental verification. The Root Mean Square (RMS) and slope Root Mean Square (slopeRMS) values are 28.676 nm and 0.97 μ rad, respectively.

Key words: optical testing; super-large plane mirror; TMT; SSI; pentaprism scan

- 基金项目:国家自然科学基金 (62127901, 12003034, 12003035); 吉林省科技发展计划 (20200401065 GX)
- 作者简介:王孝坤,男,研究员,博士生导师,博士,主要从事光学制造及测试技术方面的研究。

收稿日期:2021-12-10; 修订日期:2022-01-12

通讯作者:戚二辉,男,副研究员,硕士生导师,博士,主要从事大口径光学元件先进制造技术方面的研究。

0 引 言

目前,美国联合世界多国计划建造 30 m 望远镜 (TMT),它最终将成为地球上最先进和最强大的光学 望远镜之一^[1]。当 TMT 完成后,天文学家将能够研究 太阳系和整个银河系及其邻近星系的恒星,并可观测 宇宙的边缘,即时间开始的地方形成的星系。

TMT 的光学系统由 30 m 口径的主镜 (由 492 块 口径为 1.44 m, 厚度为 45 mm 的六边形镜面拼接组 成)、一个完全主动的副镜和一个铰接的第三镜组 成。第三镜是一个口径为 3.5 m×2.5 m 的椭圆外形平 面反射镜,其为目前世界上最大口径的平面反射镜。 大口径反射镜的检测十分困难,而且它的外轮廓是非 圆形的,更增加了其制造和测试的难度。

检测大口径平面镜的传统方法是利用三坐标测 量仪 (CMM) 和瑞奇康芒法 (Ritchey-Common)。在铣 磨和研磨阶段,可以通过三坐标检测获得被测反射镜 镜面上离散点的数据点值,通过面形重构获得反射镜 的面形误差,但超大口径三坐标测量仪价格非常昂 贵,且大型三坐标测量仪精度难以保证,其检测精度 仅能达到微米量级[2-3]。为此,可以使用另一种常见 的坐标测量机器——摆动臂轮廓仪来进行面形的检 测,与传统三坐标相比,其可以将轮廓测量的精度提 高一个数量级以上,同时采用连续测量,测量点的密 度及测量速度有大幅度的提高,可以很好地满足大口 径轮廓测量的需要^[4],但是其精度约为 0.1 μm RMS。 大口径反射镜在抛光过程时,其表面面形可以利用瑞 奇康芒法进行测试[5-7],但该方法的瑞奇角产生检测 图像压缩,使得被测平面的面形误差与球面本身的像 散混合在一起,影响检测结果的准确性;同时大口径 反射镜在检测系统的光瞳面上发生变形,使镜面面形 误差与系统出瞳光程差之间的对应关系变得复杂,随 着瑞奇角的不同而不同,导致检测结果的数据处理变 得十分复杂。此外,瑞奇康芒法需要大口径的辅助球 面镜,辅助球面镜的口径一般为待测大口径反射镜镜 面尺寸的 1.2~1.3 倍, 大口径、高精度球面反射镜的制 造相当困难,因此,大口径平面反射镜的瑞奇康芒法 检测很难实现。

为了解决大口径反射镜面形检测的困难,尤其是 针对 30 m 望远镜第三反射镜高精度测量的瓶颈,提 出了五棱镜扫描和子孔径拼接相结合的方法。五棱 镜扫描检测获取低阶面形精度,配合子孔径进行全口 径测试,获得全频段面形信息。

1 基本原理

当大口径反射镜经过研磨和抛光后,可以用五棱 镜扫描对其进行测试¹⁸,该方法的原理示意图如 图1所示,不管入射光束的角度如何,五棱镜都能使 光线偏转90°。入射光束与出射光束之间的夹角仅取 决于测试表面的倾斜程度,因此可以通过五棱镜扫描 测量光学表面的斜率。

五棱镜扫描测试流程图如图2所示。经五棱镜 扫描后可以获得反射镜表面的斜率信息,对斜率数据 进行积分能够得到其面形误差,经过像差拟合后,如 果低阶像差不明显,反射镜将进行精抛光并结合子孔 径拼接测试技术开展后续加工;如果低阶像差明显, 该反射镜将重新进行研磨和粗抛光加工,并通过五棱 镜扫描再次测量。

大口径反射镜子孔径拼接检测流程如图 3 所示, 其方法原理如图 4 所示。首先进行子孔径规划,大口 径反射镜将被划分成几个小的区域 (子孔径),利用小 口径干涉仪逐次对大口径反射镜的各区域进行相位 测量,利用三角剖分算法和综合优化子孔径拼接算法 可以完成对大口径反射镜全口径的面形检测^[9-13]。

首先,根据被测镜和干涉仪的孔径确定子孔径的 大小和个数。通过拼接系数可以拼接整个面形,为了 正确计算拼接系数,相邻子孔径会有重叠区域,且重

图 2 五棱镜扫描大镜检测流程图

Fig.3 Flow chart of testing large mirror by SSI

叠区域大于子孔径的 1/4。其次,通过调整干涉仪与 大口径反射镜,使干涉仪对准和遍历各子孔径,利用 干涉测量法可以检测各子孔径的相位分布,通过拼接 获得全口径面形。在测量每个子孔径面形相位的过 程中,由于受测试环境的影响、镜面粗糙度不均匀、 测试仪器精度等因素的影响,使得子孔径数据必然存 在缺失,将采用三角剖分算法求解和填补子孔径相位 数据^[14]。

假设将每个子孔径的相位数据转换为对应的全局三维坐标,如图 5 (a) 所示,首先在 X-Y 平面上定义均匀网格,将第 *i* 和第 *j* 个子孔径的相位数据投影到 X-Y 平面上,三角剖分示意图如图 5 (b) 所示。对子孔径 *i* 的测量数据进行三角剖分,从而得到预先定义的数据点 (x, y) 的面形值,即利用三点定义一个平面,平面方程为 *ax+by+z+c=0* (*z* 的系数一定不为 0),利用公式 (1) 求解出系数 *a*, *b*, *c*:

$$\begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -z_1 \\ -z_2 \\ -z_3 \end{pmatrix}$$
(1)

式中: (x_i, y_i, z_i)(*i*=1~3) 为构成基三角形的三个点的坐标。得到这三个点所确定的平面方程为公式(2):

$$z = -ax - by - c \tag{2}$$

将点(x, y)的坐标代入到该平面方程中,即可得 到对于第*i*个孔径,该插值点的面形值*z*。

通过逐次拼接相邻子孔径可以得到整个反射镜 的面形误差,但往往会引起拼接误差的累积。文中提 出了一种综合优化拼接方法,可以同时计算所有拼接 系数。由于拼接平面,各子孔径的未对准误差仅有相 对平移量和倾斜量的组合,可以描述为:

$$w'_{i} = w_{i} + p_{i} + a_{i}x_{i} + b_{i}y_{i}$$
 (3)

式中:w_i为干涉仪测量的第 i个子孔径的相位数据; w_i为第 i个子孔径的实际相位数据;p_i为相对的平移 系数;a_i和 b_i分别为相对 X方向倾斜和 Y方向倾斜的 系数。

假设重叠区域数为 N, 使得所有重叠区域相位差的平方和值为最小, 用最小二乘法计算最佳拼接系数:

$$\min = \sum_{i=1}^{N} \sum_{j \neq i}^{N} \left[(w_i + p_i + a_i x_i + b_i y_i) - (w_j + p_j + a_j x_j + b_j y_j) \right]^2$$
(4)

w_i和w_j为随机相邻子孔径的相位数据,通过三角剖分插值,(x_i, y_i)和(x_j, y_j)的坐标相同。因此,公式(4)可以简化为:

$$\min = \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \left[\Delta w + \Delta p + \Delta ax + \Delta by \right]^2$$
(5)

通过最小二乘拟合可以计算出所有的拼接系数, 从而精确地拼接出完整的面形信息。

图 4 大口径反射镜子孔径拼接原理示意图

Fig.4 Sketch of testing large mirror by SSI

图 5 重叠区域计算

Fig.5 Calculation in the overlapping areas

2 30 m 望远镜第三反射镜光学检测

当 30 m 望远镜第三反射镜经过研磨和粗抛光 后,镜面的面形误差较小,需要对其面形进行光学检 测,为此制定了专门的检测方案规划。

2.1 五棱镜扫描

TMT项目要求的低阶面形误差检测流程如图 6 所示。首先扫描出被检面域的低阶信息,然后进行坐标变化处理,将待检面域处理为圆形,拟合圆形面域 下的离焦和像散,代入计算公式计算 P 值,低阶评价 指标要求 P≤PA=18.8 mas,需要注意的是:mas 为 TMT 项目组自定义的量纲,代表镜面的平滑程度,P 值的 大小与离焦和像散的 RMS 值有关,具体计算为:

$$P = C_f |Z_4| + C_a \sqrt{Z_5^2 + Z_6^2}$$

$$C_f = 1.97 \text{ mas}/(RMS@\mu\text{m}), C_a = 63.7 \text{ mas}/(RMS@\mu\text{m})$$
(6)

式中: Z₄为低阶离焦项; Z₅和Z₆分别表示 0°像散和 45° 像散。

首先,通过五棱镜扫描进行面形测试,如图 7 所 示,其有两个五棱镜,一个棱镜在被测镜上扫描提供 测量 *A*,另一个保持固定提供参考测量 *B*,因此大口径 反射镜表面的斜率信息可通过 (*A*-*B*)/2 获得^[15-16],通 过扫描多条母线,可以计算出大反射镜的斜率误差, 并通过积分计算出表面的相位分布 *W*(*X*, *Y*)。因为面 形误差的主要分布是低阶像差,*W*可以描述为:

 $W = A_1 + A_2 X + A_3 Y + A_4 (X^2 + Y^2) + A_5 X Y + A_6 (X^2 - Y^2) + A_7 X (X^2 + Y^2) + A_8 Y (X^2 + Y^2) + A_9 (X^2 + Y^2)^2 + \delta$ (7)

式中: A_i (*i*=1~9) 为每种初级像差的系数, 它分别表示 平移、X倾斜、Y倾斜、离焦、像散(A₅、A₆)、彗差 (A₇、A₈) 和球差系数, δ为面形误差的残余像差, 通过 最小二乘法, 可利用公式(8) 拟合最佳系数, 因此, 可 以获得面形误差的低阶像差并循环加工, 直到低阶像 差的分布满足 TMT 项目需求。

$$\sum \left\{ W - \left[A_1 + A_2 X + A_3 Y + A_4 (X^2 + Y^2) + A_5 X Y + A_6 (X^2 - Y^2) + A_7 X (X^2 + Y^2) + A_8 Y (X^2 + Y^2) + A_9 (X^2 + Y^2)^2 \right] \right\}^2 = \min (8)$$

图 6 TMT 第三反射镜低阶误差检测流程图

Fig.6 Flow chart of testing low-order error of TMT-M3

图 7 五棱镜扫描 30 m 望远镜第三反射镜的装置示意图

Fig.7 Sketch of setup of testing TMT-M3 by scanning pentaprism

2.2 子孔径拼接干涉

当面形误差的分布主要包含中、高频误差时将通 过子孔径拼接进行面形检测。因为 30 m 望远镜第三 反射镜是一个 3.5 m×2.5 m 的大口径反射镜,如果用 小口径干涉仪进行拼接,子孔径数达到上万个,测试和计算时间很长,拼接精度很难保证[17-19]。

为了解决这些问题,30m望远镜第三反射镜将采用 Fizeau 干涉仪进行拼接,设备示意图如图 8 所示,

它包含一个小口径干涉仪、一个离轴抛物镜 (Off Axis Paraboloid, OAP) 和一个口径为 1.5 m 的参考镜, 参考 波面和经反射镜返回的测试波面将发生干涉, 子孔径 的数量大大减少, 仅需九个子孔径即可覆盖整个反射镜, 子孔径的分布如图 9 所示。通过开发的拼接算法 可以精确地得到全口径的面形误差。

图 9 子孔径拼接检测 30 m 望远镜第三反射镜子孔径分布 Fig.9 Distribution of subaperture of testing TMT-M3 by SSI

3 实验验证及分析

为了验证五棱镜扫描及子孔径拼接技术的可行性,设计并研制了 30 m 望远镜第三反射镜的原理镜, 其为 900 mm×600 mm 椭圆外形、厚度仅为 12.5 mm 的微晶玻璃超薄反射镜。在抛光阶段利用五棱镜扫 描检测,如图 10 所示,其检测结果如图 11 所示,低阶 面形表现形式为离焦及像散,P值最终为 6.61 mas,小

于 TMT 项目组要求的 18.8 mas。利用小口径 4D 干 涉仪经 300 mm 口径扩束系统后对其进行子孔径拼接 检测,设备如图 12 所示,其检测结果如图 13 所示,面 形 RMS 值为 28.676 nm, slopeRMS 为 0.97 μrad,满足 设计要求。

图 10 原理镜五棱镜扫描检测设备图

Fig.10 Setup of testing the prototype by scanning pentaprism

图 11 原理镜五棱镜扫描检测结果

Fig.11 Testing results of the prototype by scanning pentaprism

图 12 原理镜子孔径拼接检测装置及规划图 Fig.12 Setup and subaperture distrbution of testing the prototype by SSI

第1期

图 13 原理镜拼接检测结果

Fig.13 Testing results of the prototype by SSI

4 结 论

为了解决大口径反射镜,特别是 30 m 望远镜第 三反射镜测试的困难,提出了一种五棱镜扫描与子孔 径拼接相结合的新方法。介绍和研究了五棱镜扫描 和子孔径拼接计测的基本理论和原理,制定了 30 m 望远镜第三反射镜的光学测试方案,并研制了 30 m 望远镜第三反射镜的原理镜进行实验验证,其最终面 形误差低阶值为 6.61 mas, slopeRMS 为 0.97 μrad,满 足设计指标要求,从而提供了一种高精度光学检测大 口径反射镜面形的方法。

参考文献:

- TMT International Observatory. Thirty Meter Telescope Astronomy's Next-Generation Observatory [EB/OL]. [2022-01-12]. https://www.tmt.org/.
- [2] Pan Junhua. Design, Fabrication and Testing of Optical Aspheres [M]. Beijing: Science Press, 1994. (in Chinese)
- [3] Wang Quandou. Novel profilometer with dual digital length gauge for large aspherics measurement [C]//SPIE, 2000, 4231: 39-46.
- [4] Su P, Oh C J, Parks R E. et al. Swing arm optical CMM for aspherics [C]//SPIE, 2009, 7426: 74260J.
- [5] Han S, Novak E, Schuring M. Application of Ritchey-Common test in large flat measurements [C]//SPIE, 2001, 4399: 131-136.
- [6] Han S, Novak E, Schurig M. Ritchey-common test used for measurement of astronomical optical [C]//SPIE, 2003, 4842: 270-273.
- Shu K L. Ray-trace analysis and data reduction methods for the Ritchey-Common test [J]. *Applied Optics*, 1983, 22(12): 1879-1886.
- [8] Mallik P, Zhao C, Burge J H. Measurement of a 2-m flat using a pentaprism scanning system [J]. *Optical Engineering*, 2007, 46(2): 023602.

- [9] Murphy P, Fleig J, Forbes G. Subaperture stitching interferometry for testing mild aspheres [C]//SPIE, 2006, 6293: 62930J.
- [10] Yan Lisong, Zhang Binzhi, Wang Xiaokun, et al. Subaperture stitching testing to flat mirror based on weighting algorithm [J]. *Infrared and Laser Engineering*, 2021, 50(11): 20210520. (in Chinese)
- [11] Cai Zhihua, Wang Xiaokun, Hu Haixiang, et al. Non-null stitching test convex aspheric metal mirror [J]. *Infrared and Laser Engineering*, 2021, 50(11): 20210061. (in Chinese)
- [12] Kulawiec A, Murphy P, Marco M. Measurement of highdeparture aspheres using subaperture stitching with the variable optical null (VON) [C]//SPIE, 2010, 7655: 765512.
- [13] Zhao C Y, Burge J H. Stitching of off-axis sub-aperture null measurements of an aspheric surface [C]//SPIE, 2008, 7063: 706316.
- [14] Yan Lisong, Wang Xiaokun, Zheng Ligong, et al. Experimental study on subaperture testing with iterative triangulation algorithm [J]. *Opt Express*, 2013, 21(19): 22628-22644.
- [15] Qi Erhui, Luo Xiao, Li Ming, et al. Error analysis of scanning pentaprism system in optical testing on large aperture flat mirror [J]. *Infrared and Laser Engineering*, 2015, 44(2): 639-646. (in Chinese)
- [16] Geckeler R D. Optimal use of pentaprisms in highly accurate deflectometric scanning [J]. *Measurement Science and Technology*, 2007, 18(1): 115-125.
- [17] Su Peng. Absolute measurements of large mirrors [D]. Tucson: The University of Arizona, 2008.
- [18] Wang X K, Wang L H. Measurement of large aspheric surfaces by annular subaperture stitching interferometry [J]. *Chinese Optics Letters*, 2007, 11(5): 645-647.
- [19] Zhang P, Zhao H, Zhou X, et al. Subaperture stitching interferometry using stereovision positioning technique [J]. Opt Express, 2010, 18(14): 15216-15222.